Linear measuring technology

Draw-wire encoder C60
Robust-Line
Measuring length max. 4 m

With its extremely robust design, the high protection class IP69k and the wide temperature range up to $-40^{\circ} \mathrm{C} . .+85^{\circ} \mathrm{C}$ the draw-wire encoders C60 are specially developed for outdoor applications.

Their flexibility and adaptability reflects in the wide range of housing and wire types, the long measuring range and the various interfaces. The possibility of redundancy must be particularly pointed out.

Analog
output
CANopen

Robust

- Protection level up to IP69k and wide temperature range up to $-40^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}$.
- The titanium-anodized aluminum housing and the stainless steel wires allow using the mechanics even in harsh conditions.
- Wire diameter (stainless steel, V4A) up to ø 1 mm - ideal for outdoor applications.

Versatile

- Measuring length up to 4 m
- Redundant outputs (mA, V, R, CANopen).
- The right measuring wire and the right wire fastening for every application.
- Linearity up to $\pm 0.1 \%$ of the measuring range.
- Various constructions: open, closed housing or housing with perforated sheet steel cover.

Order code	D8.C60 Type			(See a	Iso exte	ded od	er op	ons on p	ge 6.					
(a) Measuring length $\begin{aligned} 2 & =1.0 \mathrm{~m} \\ 3 & =1.5 \mathrm{~m} \\ 4 & =2.0 \mathrm{~m} \\ 5 & =2.5 \mathrm{~m} \\ 6 & =3.0 \mathrm{~m} \\ 7 & =3.5 \mathrm{~m} \\ 8 & =4.0 \mathrm{~m} \end{aligned}$ (b) Wire types (plastic coated) $\begin{aligned} & 1=\mathrm{V} 4 \mathrm{~A}, \varnothing 0.5 \mathrm{~mm} \\ & 2=\mathrm{V} 4 \mathrm{~A}, \varnothing 0.7 \mathrm{~mm} \\ & 3=\mathrm{V} 4 \mathrm{~A}, \varnothing 1.0 \mathrm{~mm} \end{aligned}$	(c) Linearity 1 = standard 2 = improved 3 = improved (d) Housing 1 = open hous 3 = housing v sheet meta $6=$ closed ho	nearit inear inear ing th pe al cov sing				$\begin{aligned} & 22= \\ & 33= \\ & 31= \\ & R 1= \\ & 21= \\ & 32= \\ & 31= \end{aligned}$		en	uppl ... 30 30 V DC 30 or/s 12. ... 3 30 V 8 ...	volta DC D DC pply 30 V D V DC C V DC				$\begin{aligned} & 1=a x i \\ & 2=a x i \\ & C=a x i \\ & E=a x i \\ & D=a x i \\ & F=a x i \end{aligned}$ Connec $3=a x i$ 4-p $5-p$ $8-p$		e, 2 e, 5 e, 5 e, 10 e, 10 con ens ens ens	tion / sens tanda [6.56' [6.56' [16.40 [16.40 m [32.8 m [32.81 ector type type type	or len TPE TPE ${ }^{\prime}$] TP ${ }^{\prime}$] TP 81’] TP [1] TP / IP67 A11 . CC1 R11..	ths ${ }^{\text {I }}$ IP69k IP67 / IP69k / IP67 E / IP69 E IP67 A33 RC1 R33	
Relationship measuring length - wire types - linearity																				
Measuring length	$\begin{array}{r} {[\mathrm{m}]} \\ \text { order code } \end{array}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$			$\begin{aligned} & 1.5 \\ & 3 \end{aligned}$			$\begin{gathered} 2.0 \\ 4 \end{gathered}$			$\begin{aligned} & 2.5 \\ & 5 \end{aligned}$			$\begin{aligned} & \hline 3.0 \\ & 6 \end{aligned}$					$\begin{gathered} 4.0 \\ 8 \end{gathered}$	
Wire type	$\begin{array}{r} \varnothing[\mathrm{mm}] \\ \text { order code } \mathbf{b} \end{array}$	$\begin{aligned} & 0.5 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & \mathbf{3} \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & 0.7 \\ & 2 \end{aligned}$	1.0 3	0.5	$\begin{aligned} & 0.7 \\ & \mathbf{2} \end{aligned}$	$\begin{aligned} & 1.0 \\ & \text { (3 } \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 2 \end{aligned}$	1.0 3	$\begin{aligned} & 0.5 \\ & \text { (1) } \end{aligned}$		$\begin{aligned} & 1.0 \\ & \mathbf{3} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.7 \\ & \mathbf{2} \end{aligned}$
Standard linearity $\pm 0.5 \%$	order code (C) $\mathbf{1}$	± 0.5 \%			$\pm 0.5 \%$			± 0.5 \%		± 1 \%	$\pm 0.5 \%$	$\pm 1 \%$		$\pm 0.5 \%$	$\pm 1 \%$		$\pm 0.5 \%$	$\pm 1 \%$	$\pm 0.5 \%$	$\pm 1 \%$
Improved linearity ± 0.25 \%	order code (C) 2	\checkmark	-	\checkmark	-	-	\checkmark	-	-	-	-	-	-							
Improved linearity ± 0.1 \%	order code (C) 3	\checkmark	-	\checkmark	-	-	\checkmark	-	-	-	-	-	-							
\checkmark feasible /-not feasible																				

Linear measuring technology

[^0]
Linear measuring technology

Draw-wire encoder C60	Robust-Line	Measuring length max. 4 m		
Technical data				
General technical data		Interface characteristics CANopen - Sensor type CC1, RC1		
Standard linearity	± 0.5 \%, ± 1 \%	CAN specification	Full CAN 2.0B (IS011898)	
Improved linearity	± 0.25 \% or ± 0.1 \%	Communication profile	CANopen CiA 301 V 4.2.0	
Resolution	see electrical characteristics	Device profile	encoder, absolute linear; CiA 406 V 3.2.0	
Sensor element	potentiometer			
Output signal (others on request)	potentiometer, 4 ... $20 \mathrm{~mA}, 0$... 10 V CANopen	Error monitoring	Producer Heartbeat, Emergency Message, Node Guarding	
Connection	axial M12 connector or axial cable outlet (TPE cable), standard length 2,5,10 m	Node ID	default: 7, adjustable via SD0	
		PDO	$1 \times$ TPDO, static mapping	
		PDO functions	event-triggered, time-triggered, Sync-cyclic, Sync-acyclic	
Protection $\begin{array}{r}\text { M12 connector } \\ \text { cable }\end{array}$	$\begin{aligned} & \text { IP67 } \\ & \text { IP67, IP69k } \end{aligned}$			
		Transmission rate	Default 250 kbit/s, 1 Mbps, $800,500,250,125,50,20 \mathrm{kbps}$ adjustable via SDO	
Humidity	max. 90 \% relative, no condensing			
Working temperature as extended order option (s.page 6)	$\begin{aligned} & -20^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}\left[-4^{\circ} \mathrm{F} \ldots+185^{\circ} \mathrm{F}\right] \\ & -40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}\left[-40^{\circ} \mathrm{F} \ldots+185^{\circ} \mathrm{F}\right] \end{aligned}$	Bus connection	M12 connector, 5 -pin or axial cable outlet (TPE cable), standard length 2 m	
Speed max.	$3.0 \mathrm{~m} / \mathrm{s}$			
Acceleration max.	$50 \mathrm{~m} / \mathrm{s}^{2}$	Integrated bus terminating resistor	120 ohms ready-to-activate via SDO	
Weight	up to approx. 420 g [14.82 oz] depending on measuring range and measuring wire diameter	Bus, galvanic isolation	no	
		Supply voltage	8 ... 30 V DC	
		Current consumption	typ. 10 mA at 24 V , typ. 20 mA at 12 V	
Housing	aluminum, spring housing PA6			
Spring force	min. $4 \mathrm{~N} /$ max. $6 \mathrm{~N}^{11}$	Measuring rate	1 kHz with 16 bit resolution	
		Resolution	0.002% of the measuring range	
		Electrical protection	Reverse polarity protection	
Electrical characteristics (analog sensor, scaled to measuring range)				
Version	A11 / R11	A22 / R22	A33 / R33	
Output	4 ... 20 mA	0 ... 10 V	$1 \mathrm{k} \Omega$, potentiometer	
Output current	max. 50 mA in case of a failure	max. 10 mA , min. load $10 \mathrm{k} \Omega$	-	
Max. current consumption	-	22.5 mA (non load)	-	
Supply voltage	$12 . . .30 \mathrm{~V}$ DC	$12 . . .30 \mathrm{~V}$ DC	max. 30 V DC	
Response time	< 1 ms from 0 ... 100% and $100 . . .0 \%$	<3 ms from 0 ... 100% and $100 . . .0 \%$	-	
Resolution	limited by the noise	limited by the noise	theoretically unlimited	
Noise	$0.03 \mathrm{~mA}_{\mathrm{pp}}=6 \mathrm{mV} \mathrm{pp}^{\text {at }} 200 \Omega$	typ. $3 \mathrm{mV} \mathrm{pp}^{\prime}$ max. 37 mV pp	depending on the supply voltage	
Recommended slider current	-	-	< $1 \mu \mathrm{~A}$	
Reverse polarity protection	yes	yes	-	
Short circuit proof	-	yes, sustained short-circuit proof	-	
Temperature coefficient	0.0079 \%/K	0.0037 \%/K	± 0.0025 \%/K	
Characteristics measuring wire (plastic coated)		Approvals		
V4A, $\varnothing 0.5 \mathrm{~mm}$ no. breaking force TK	$\begin{aligned} & 1.4401 \\ & 130 \mathrm{~N} \\ & 16 \times 10^{-6} \mathrm{~K}^{-1} \end{aligned}$	Electromagnetic compatibility	acc. to EN 61326-1, EN 61326-3-1	
		CE compliant in accordance with		
$\text { V4A, ø } 0.7 \text { mm }$	1.4401	RoHS Directive	$\begin{aligned} & \text { 2014/30/EU } \\ & \text { 2011/65/EU } \end{aligned}$	
	$\begin{aligned} & 216 \mathrm{~N} \\ & 16 \times 10^{-6} \mathrm{~K}^{-1} \end{aligned}$	UKCA compliant in accordance with EMC Regulations RoHS Regulations	S.I. 2016/1091 S.I. 2012/3032	
V4A, ø 1.0 mm breaking force	$\begin{aligned} & 1.4401 \\ & 478 \mathrm{~N} \end{aligned}$			

[^1]Linear measuring technology

Draw-wire encoder C60
Robust-Line
Measuring length max. 4 m

Terminal assignment

Analog sensor A22$\text { (} 0 . . .10 \text { V DC) }$		Signal:	R/U converter								V	
			+V	Uout	0 V	$0 \mathrm{~V}_{\text {out }}$						
	Cable ${ }^{11}$	Core color:	BN	WH	BU	BK						
	M12 connector, 4-pin	Pin:	1	2	3	4						
Analog sensor R22, redundant$(2 \times 0 \ldots 10 \vee D C)$			R/U converter 1				R/U converter 2					
		Signal:	+ ${ }^{+}$	Uout 1	OV 1	$0 V_{\text {out } 1}$	+V2	Uout 2	OV2	O Vout 2		
	Cable ${ }^{11}$	Core color:	WH	BN	GN	YE	GY	PK	BU	RD		
	M12 connector, 8-pin	Pin:	1	2	3	4	5	6	7	8		

Analog sensor A33 (potentiometer $1 \mathrm{k} \Omega$)			Potentiometer								
		Signal:	+V	Out	0 V	n.c.					
	Cable ${ }^{11}$	Core color:	BN	WH	BU	BK					
	M12 connector, 4-pin	Pin:	1	2	3	4					
Analog sensor R33, redundant (2 x potentiometer $1 \mathrm{k} \Omega$)			Potentiometer 1				Potentiometer 2				
		Core color:	+V ${ }_{1}$	Out 1	OV 1	n.c.	+ ${ }^{2}$	Out 2	0 V 2	n.c.	
	Cable ${ }^{11}$	Core color:	WH	BN	GN	YE	GY	PK	BU	RD	
	M12 connector, 8-pin	Pin:	1	2	3	4	5	6	7	8	

Digital sensor CC1 (CANopen)		Signal:	CANopen					
			+V	OV	CAN_GND	CAN_H	CAN_L	
	Cable ${ }^{11}$	Core color:	WH	BU	BN	BK	GY	
	M12 connector, 5-pin	Pin:	2	3	1	4	5	
Digital sensor RC3, redundant (2 x CANopen)			CANopen $1+$ CANopen 2					
		Core color:	+V	OV	CAN_GND	CAN_H	CAN_L	
	Cable ${ }^{11}$	Core color:	WH	BU	BN	BK	GY	
	M12 connector, 5-pin	Pin:	2	3	1	4	5	

Top view of mating side, male contact base

M12 connector, 4-pin

M12 connector, 5-pin

M12 connector, 8-pin

Linear measuring technology

Draw-wire encoder C60
Robust-Line
Measuring length max. 4 m

Technology in detail

Operating principle

Construction

The core of a draw-wire device is a drum mounted on bearings, onto which a wire is wound. Winding takes place via a spring-loaded device. A specific feature of Kübler draw-wire mechanics is the singlelayer wire winding (for short wire lengths) to ensure best possible linearity.
Depending on the required linearity, a multi-layer winding may however be accepted for the C60 drawwire encoder.

Note

Exceeding the maximum extension length of the draw-wire will lead to damage to the wire and the mechanics.
In addition, snapping of the cable during installation must imperatively be avoided, as this can also lead to damages.

Wire fastenings

Carabiner ring
D8.C60.xxx.xxxx.xxxx
M4 thread ${ }^{1)}$
D8.C60.xxxx.xxxx.xxxx.V001 D8.C60.xxxx.xxxx.xxxx.V002

D8.C60.xxxx.xxxx.xxxx.V007

ball-bearing swivel (no torsion of the measuring wire during installation)
rubber stopper
measuring wire

Wire types

- V4A plastic coated, $\varnothing 0.5 \mathrm{~mm}$, order option (b) $=1$
- V4A plastic coated, $\varnothing 1.0 \mathrm{~mm}$, order option (b) $=2$
- V4A plastic coated, $\varnothing 1.5 \mathrm{~mm}$, order option (b) $=3$

Ideally suited for long-term outdoor use.
The plastic coating has a dirt-repellent effect and has in the same time optimum sliding properties.

Extension wire

For optimum use of the measuring range by extending the wire length,
e. g. to allow realizing a pre-extension in the application.

Especially combined with analog interfaces
(options A11, A22, A33 and R11, R22, R33).

Linear measuring technology

Draw-wire encoder C60
Robust-Line
Measuring length max. 4 m

Technology in detail

Application-specific installation possibilities

Extended temperature range $-40^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}$

(only in combination with the standard linearity 0.5%)
By using special components.
Order code extensions for the extended temperature range:
With carabiner ring: D8.C60.xxxx.xxxx.xxxx.V003
With M4 thread: D8.C60.xxxx.xxxx.xxxx.V004
With eyelet: D8.C60.xxxx.xxxx.xxxx.V005
With clip: D8.C60.xxxx.xxxx.xxxx.V008

Linear measuring technology

Draw-wire encoder C60
Robust-Line
Measuring length max. 4 m

Dimensions

Dimensions in mm [inch]
With standard linearity (without wire guide)
order option $\mathbf{C}=1$

With improved linearity (with wire guide)

order option $\mathbf{C}=2,3$

[^0]: Further Kübler cables and connectors can be found at: kuebler.com/connection-technology

[^1]: 1) Depends on the measuring length.
